Math 6646 Exam 1 Review

Definitions

A function f continuous on an open connected set $\mathcal{D} \in \mathbb{R}^2$ satisfies the Lipschitz condition if

$$
|f(t, x_1) - f(t, x_2)| \le K|x_1 - x_2|
$$

for all $(t, x_1), (t, x_1) \in \mathcal{D}$. **NB** If f is Lipschitz continuous, then there exists a unique solution to $x' = f$ with $x(t_0) = x_0$ in a finite interval including t_0 .

A value z is said to be of **order** $p [z = \mathcal{O}(h^p)]$ if there exist positive constants h_0 and C such that $|z| \leq Ch^p$ for all $h \in (0, h_0)$.

A scheme is said to be **convergent** on an interval \mathcal{I} if, for all $t_n \in \mathcal{I}, |x_n - x(t_n)| \to 0 \text{ as } h \to 0.$

A scheme is said to be **consistent** if its difference operator \mathcal{L} has finite positive order *p*. Consistency implies convergence.

A linear multistep method is zero-stable if all roots of its characteristic polynomial $\rho(r)$ are such that $|r| \leq 1$, and any $r = 1$ are simple roots. A method is zero-stable if and only if it is consistent and convergent.

An LMM is absolutely stable if its application to $x' = \lambda x$ (with Re λ < 0) with a given value of $\hat{h} = h\lambda$, its solutions tend to 0 as $n \to 0$ for any starting values.

An LMM is A-stable if its region of absolute stability includes the entire left half plane (i.e., for all $\text{Re } \hat{h} < 0$).

Taylor Series Approximations

Only first-order ODEs will be discussed, since any higher order linear ODE may be written as a system of these first order problems. Consider

$$
x''' + ax'' + bx' + cx = f.
$$

Now if we let $y = x'$ and $z = y' = x''$, then we can write

$$
x' = y
$$

$$
y' = z
$$

$$
z' = -(az + by + cx) + f
$$

Euler's Method

Euler's method solves the IVP $x'(t) = f(x, t)$, $x_0 = \eta$ with the scheme

$$
x_{n+1} = x_n + h f_n. \tag{1}
$$

Since $x(t+h) = x(t) + hx'(t) + \frac{1}{2!}h^2x''(t) + \mathcal{O}(h^3)$, we see that remainder terms have order $\mathcal{O}(h^2)$.

Proof of Convergence Consider the IVP for some constant λ and function $q(t)$

$$
x'(t) = \lambda x + g, \quad x_0 = 1.
$$

Euler's method gives

$$
x_{n+1} = \lambda x_n + g(t_n).
$$

A Taylor series expansion of the solution gives $x(t_{n+1}) =$ $x(t_n) + hx'(t_n) + \mathcal{O}(h^2)$, so defining the error $e_{n+1} \equiv$ $x(t_n) - x_n$ gives

$$
e_{n+1} = (1 + h\lambda)e_n + T_{n+1},
$$

where $T = \mathcal{O}(h^2)$ is error due top the truncation of the Taylor series. Since we know the initial condition, $e_0 = 0$, and then the error at each subsequent point is

$$
e_{n+1} = (1 + h\lambda)e_n + T_{n+1}
$$

\n
$$
\implies e_n = \sum_{j=1}^n (1 + h\lambda)^{n-j} T_j,
$$

Then, since $|1 + h\lambda| \leq 1 + h\lambda \leq e^{h|\lambda|}$ [note from the expansion that $e^x = 1 + x + \mathcal{O}(x^2)$,

$$
|1+h\lambda|^{n-j}\leq e^{h|\lambda|(n-j)}=e^{|\lambda|t_{n-j}}\leq e^{|\lambda|t_{f}},
$$

where $t_f = nh$ is the final time. Then, since by definition $|T_j| \leq Ch^2$ for some finite C, we can say that each term of Eq. [\(2\)](#page-0-0) is bounded by $(Ce^{|\lambda|t}f)h^2$, and thus

$$
|e_n| \le n \left(Ce^{|\lambda|t} f h^2 \right) = nh hCe^{|\lambda|t} f = t_f hCe^{|\lambda|t} f
$$

Higher Order Methods

Higher-order accuracy can be achieved by retaining more terms in the Taylor series, i.e.,

$$
x_{n+1} = x_n + h f_n + \frac{h^2}{2!} f'_n + \frac{h^3}{3!} f''_n + \dots
$$
 (2)

This assumes that f_n is continually differentiable, and such derivatives may not be easy to determine.

Linear Multistep Methods

To avoid having to determine analytical derivatives (as second and higher-order Taylor series methods require), multi-step methods approximate these derivatives with known values. Consider that for any function $z(t)$ whose first three derivatives are defined, we can write

$$
z'(t + h) = z'(t) + hz''(t) + \mathcal{O}(h^2).
$$

 (3)

. (6)

Then expanding $z(t)$ and using Eq. [\(3\)](#page-0-1),

$$
z(t+h) = z(t) + hz'(t) + \frac{h^2}{2}z''(t) + \mathcal{O}(h^3)
$$
(4)

$$
= z(t) + hz'(t) + \frac{h^2}{2} \left\{ \frac{1}{h} \left[z'(t+h) - z'(t) \right] \right\} + \mathcal{O}(h^3)
$$

$$
= z(t) + \frac{h}{2} \left[z'(t+h) + z'(t) \right] + \mathcal{O}(h^3).
$$
(5)

If we have an ODE $x' = f$ we're trying to solve, then the scheme gives the trapezoidal rule

$$
x_{n+1} = x_n + \frac{h}{2} (f_{n+1} + f_n).
$$

Now consider the expansion for $z'(t-h) = z'(t) - hz''(t) +$ $\mathcal{O}(h^2)$, so that re-arranging and substituting into Eq. [\(4\)](#page-0-2) gives (omitting the algebra)

$$
z(t+h) = z(t) + \frac{h}{2} [3z'(t) - z'(t-h)] + \mathcal{O}(h^3), \qquad (7)
$$

or as a scheme

$$
x_{n+1} = x_n + \frac{h}{2} \left(3f_n + f_{n-1} \right). \tag{8}
$$

This scheme requires values at t_{n-1} and t_n to compute the value at t_{n+1} and is thus a *multistep method*. However, they have the benefit of having second-order accuracy.

Functional Iteration

Implicit methods (i.e., those which require knowledge of f_{n+1}) will yield a nonlinear equation whose roots we need to know. One way to find these is functional iteration, where we start with an initial guess, (say $x_{n+1}^{[0]} \approx x_n$), and then plug the result into the initial expression. So for backward Euler

$$
x_{n+1}^{[j+1]} = x_n + h f\left(t_{n+1}, x_{n+1}^{[j]}\right) \tag{9}
$$

Consistency, Convergence, and Zero-Stability

Two step LMMs can be written most generally as

$$
x_{n+2} + \alpha_1 c_{n+1} + \alpha_0 x_n = h \left(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n \right).
$$

A scheme is *implicit* if $\beta_2 \neq 0$ and *explicit* otherwise. The difference operator $\mathcal L$ for the scheme is

$$
\mathcal{L} \equiv z(t+2h) + \alpha_1 z(t+h) + \alpha_0 z(t)
$$

$$
-h \left[\beta_2 z'(t+2h) + \beta_1 z'(t+h) + \beta_0 z'(t) \right]. \tag{10}
$$

By Taylor expanding each term, we can find the order p of $\mathcal{L} = \mathcal{O}(h^{p+1})$. If $p > 0$, then the method is **consistent**. To test for consistency, assemble the characteristic polynomials

$$
\rho(r) = r^2 + \alpha_1 r + \alpha_0
$$
 and $\sigma(r) = \beta_2 r^2 + \beta_1 r + \beta_0$. (11)

The method is consistent if and only if $\rho(1) = 1$ and $\rho'(1) = \sigma(1)$. In k-step cases, this condition becomes

$$
\sum_{j=0}^{k} \alpha_j = 0 \quad \text{ and } \quad \sum_{j=0}^{k} j \alpha_j = \sum_{j=0}^{k} \beta_j
$$

Methods whose characteristic polynomial $[\rho(r)]$ in Eq. [\(11\)](#page-0-3)] has roots with magnitude less than 1 (root condition) are zero-stable. If a method is consistent is consistent and zerostable, then it is convergent. Absolute stability is is true when $p(r) = \rho(r) - h\lambda\sigma(r)$ obeys the root condition.

c 2020 by [Scott Schoen Jr,](www.scottschoenjr.com) licensed under [MIT License](https://opensource.org/licenses/MIT)